Sunday, July 26, 2009

Navigation satellites


Navigation satellites were developed primarily to satisfy the need for a navigation system that nuclear submarines could use to update their inertial navigation system. This led the U.S. navy to establish the Transit program in 1958; the system was declared operational in 1962 after the launch of Transit 5A. Transit satellites provided a constant signal by which aircraft and ships could determine their positions with great accuracy. In 1967 civilians were able to enjoy the benefits of Transit technology. However, the Transit system had an inherent limitation. The combination of the small number of Transit satellites and their polar orbits meant there were some areas of the globe that were not continuously covered—as a result, the users had to wait until a satellite was properly positioned before they could obtain navigational information. The limitations of the Transit system spurred the next advance in satellite navigation: the availability of 24-hour worldwide positioning information. The Navigation Satellite for Time and Ranging/Global Positioning Satellite System (Navstar/GPS) consists of 24 satellites approximately 11,000 miles above the surface of the earth in six different orbital planes. The GPS has several advantages over the Transit system: It provides greater accuracy in a shorter time; users can obtain information 24 hours a day; and users are always in view of at least five satellites, which yields highly accurate location information (a direct readout of position accurate to within a few yards) including altitude. In addition, because of technological improvements, the GPS system has user equipment that is smaller and less complex. The former Soviet Union established a Navstar equivalent system known as the Global Orbiting Navigation Satellite System (GLONASS). The Russian-operated GLONASS will use the same number of satellites and orbits similar to those of Navstar when complete. Many of the handheld GPS receivers can also use the GLONASS data if equipped with the proper processing software.

Applications satellites are designed to test ways of improving satellite technology itself. Areas of concern include structure, instrumentation, controls, power supplies, and telemetry for future communications, meteorological, and navigation satellites.

Satellites also have been used for a number of military purposes, including infrared sensors that track missile launches; electronic sensors that eavesdrop on classified conversations; and optical and other sensors that aid military surveillance. Such reconnaissance satellites have subsequently proved to have civilian benefits, such as commercially available satellite photographs showing surface features and structures in great detail, and fire sensing in remote forested areas. The United States has launched several Landsat remote-imaging satellites to survey the earth's resources by means of special television cameras and radiometric scanners. Russia and other nations have also launched such satellites; the French SPOT satellite provides higher-resolution photographs of the earth.

navigation satellite, artificial satellite designed expressly to aid the navigation of sea and air traffic. Early navigation satellites, from the Transit series launched in 1960 to the U.S. navy's Navigation Satellite System, relied on the Doppler shift. Based on the shift in the satellite's frequency, a ship at sea could accurately determine its longitude and latitude. The Global Positioning System (GPS), which uses a web of 24 Navstar satellites in 12-hour orbits, employs the more accurate triangulation method to determine position. Each satellite broadcasts time and position messages continuously. Precise to within a few yards, the GPS can also be used for nonnavigation purposes, such as surveying, tracking migrating animals, and plotting the crop yields of small sections of farmland. The former Soviet Union established a Navstar-equivalent system known as the Global Orbiting Navigation Satellite System (GLONASS). Russia's GLONASS will use the same number of satellites and orbits similar to those of Navstar when complete.

No comments:

Post a Comment